64 research outputs found

    An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems

    Get PDF
    Bat algorithm is a population metaheuristic proposed in 2010 which is based on the echolocation or bio-sonar characteristics of microbats. Since its first implementation, the bat algorithm has been used in a wide range of fields. In this paper, we present a discrete version of the bat algorithm to solve the well-known symmetric and asymmetric traveling salesman problems. In addition, we propose an improvement in the basic structure of the classic bat algorithm. To prove that our proposal is a promising approximation method, we have compared its performance in 37 instances with the results obtained by five different techniques: evolutionary simulated annealing, genetic algorithm, an island based distributed genetic algorithm, a discrete firefly algorithm and an imperialist competitive algorithm. In order to obtain fair and rigorous comparisons, we have conducted three different statistical tests along the paper: the Student's tt-test, the Holm's test, and the Friedman test. We have also compared the convergence behaviour shown by our proposal with the ones shown by the evolutionary simulated annealing, and the discrete firefly algorithm. The experimentation carried out in this study has shown that the presented improved bat algorithm outperforms significantly all the other alternatives in most of the cases

    Development a new mutation operator to solve the Traveling Salesman Problem by aid of Genetic Algorithms.

    Get PDF
    Osoba E. et al have discussed our method to solve the Traveling Salesman Problem pointing that we use our developed new algorithm to compare different versions of a classical genetic algorithm, each of one with a different mutation operator and they write that this can generate some controversy. Here we shortly analyze the comment of Osaba E. et al. to show that our comparing method has a chance of existence. Keywords: Genetic algorithms, Traveling Salesman Problem, algorithm Greedy Sub Tour Mutation (GSTM). Analysis: We can classify the proposals Osaba E. and others four class: (1) Comparison and evaluation of the Greedy and Normal mutation methods together are not correct (it is wrong). As stated in our article "Development a new mutation operator to solve the Traveling Salesman Problem by aid of Genetic Algorithms" [1] our new mutation algorithm Greedy Sub Tour Mutation (GSTM) has a hybrid structure. GSTM operator acts as a greedy, at the same time include the operators of Simple Inversion Mutation (SIM) and Scramble Mutation (SCM). Also if you look at the values of PRC = 0.5, PCP = 0.8, as used in our analysis it can be seen that the probability of using GSTM classical operators is larger. In this case we can say that the comparison of operators GSTM greedy and classic is applied properly. (2) Compare with Non-Sequential 4-Change that is described in literature Therefore, to compare our method with the mutation method developed in this article is not proper. (3) It is confirmed that all greedy methods are used together (NN + DPX). So which of these methods have a success is not clear. All of Genetic Algorithms in the analysi

    Good practice proposal for the implementation, presentation, and comparison of metaheuristics for solving routing problems

    Get PDF
    Researchers who investigate in any area related to computational algorithms (both dening new algorithms or improving existing ones) usually nd large diculties to test their work. Comparisons among dierent researches in this eld are often a hard task, due to the ambiguity or lack of detail in the presentation of the work and its results. On many occasions, the replication of the work conducted by other researchers is required, which leads to a waste of time and a delay in the research advances. The authors of this study propose a procedure to introduce new techniques and their results in the eld of routing problems. In this paper this procedure is detailed, and a set of good practices to follow are deeply described. It is noteworthy that this procedure can be applied to any combinatorial optimization problem. Anyway, the literature of this study is focused on routing problems. This eld has been chosen because of its importance in real world, and its relevance in the actual literature

    Crossover versus Mutation: A Comparative Analysis of the Evolutionary Strategy of Genetic Algorithms Applied to Combinatorial Optimization Problems

    Get PDF
    Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test

    Crossover vs. Mutation: A Comparative Analysis of the Evolutionary Strategy of Genetic Algorithms Applied to Combinatorial Optimization Problems

    Get PDF
    Since their first formulation, genetic algorithms (GA) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GA is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test

    Brain structural correlates of insomnia severity in 1053 individuals with major depressive disorder : results from the ENIGMA MDD Working Group

    Get PDF
    It has been difficult to find robust brain structural correlates of the overall severity of major depressive disorder (MDD). We hypothesized that specific symptoms may better reveal correlates and investigated this for the severity of insomnia, both a key symptom and a modifiable major risk factor of MDD. Cortical thickness, surface area and subcortical volumes were assessed from T1-weighted brain magnetic resonance imaging (MRI) scans of 1053 MDD patients (age range 13-79 years) from 15 cohorts within the ENIGMA MDD Working Group. Insomnia severity was measured by summing the insomnia items of the Hamilton Depression Rating Scale (HDRS). Symptom specificity was evaluated with correlates of overall depression severity. Disease specificity was evaluated in two independent samples comprising 2108 healthy controls, and in 260 clinical controls with bipolar disorder. Results showed that MDD patients with more severe insomnia had a smaller cortical surface area, mostly driven by the right insula, left inferior frontal gyrus pars triangularis, left frontal pole, right superior parietal cortex, right medial orbitofrontal cortex, and right supramarginal gyrus. Associations were specific for insomnia severity, and were not found for overall depression severity. Associations were also specific to MDD; healthy controls and clinical controls showed differential insomnia severity association profiles. The findings indicate that MDD patients with more severe insomnia show smaller surfaces in several frontoparietal cortical areas. While explained variance remains small, symptom-specific associations could bring us closer to clues on underlying biological phenomena of MDD

    Brain structural abnormalities in obesity: relation to age, genetic risk, and common psychiatric disorders: evidence through univariate and multivariate mega-analysis including 6420 participants from the ENIGMA MDD working group

    Get PDF
    Published online: 28 May 2020Emerging evidence suggests that obesity impacts brain physiology at multiple levels. Here we aimed to clarify the relationship between obesity and brain structure using structural MRI (n = 6420) and genetic data (n = 3907) from the ENIGMA Major Depressive Disorder (MDD) working group. Obesity (BMI > 30) was significantly associated with cortical and subcortical abnormalities in both mass-univariate and multivariate pattern recognition analyses independent of MDD diagnosis. The most pronounced effects were found for associations between obesity and lower temporo-frontal cortical thickness (maximum Cohen´s d (left fusiform gyrus) = −0.33). The observed regional distribution and effect size of cortical thickness reductions in obesity revealed considerable similarities with corresponding patterns of lower cortical thickness in previously published studies of neuropsychiatric disorders. A higher polygenic risk score for obesity significantly correlated with lower occipital surface area. In addition, a significant age-by-obesity interaction on cortical thickness emerged driven by lower thickness in older participants. Our findings suggest a neurobiological interaction between obesity and brain structure under physiological and pathological brain conditions.Nils Opel ... Bernhard T. Baune ... et al

    Correction:Brain structural abnormalities in obesity: relation to age, genetic risk, and common psychiatric disorders: Evidence through univariate and multivariate mega-analysis including 6420 participants from the ENIGMA MDD working group (Molecular Psychiatry, (2020), 10.1038/s41380-020-0774-9)

    Get PDF

    Heritability of fractional anisotropy in human white matter: a comparison of Human Connectome Project and ENIGMA-DTI data

    Get PDF
    The degree to which genetic factors influence brain connectivity is beginning to be understood. Large-scale efforts are underway to map the profile of genetic effects in various brain regions. The NIH-funded Human Connectome Project (HCP) is providing data valuable for analyzing the degree of genetic influence underlying brain connectivity revealed by state-of-the-art neuroimaging methods. We calculated the heritability of the fractional anisotropy (FA) measure derived from diffusion tensor imaging (DTI) reconstruction in 481 HCP subjects (194/287 M/F) consisting of 57/60 pairs of mono- and dizygotic twins, and 246 siblings. FA measurements were derived using (Enhancing NeuroImaging Genetics through Meta-Analysis) ENIGMA DTI protocols and heritability estimates were calculated using the SOLAR-Eclipse imaging genetic analysis package. We compared heritability estimates derived from HCP data to those publicly available through the ENIGMA-DTI consortium, which were pooled together from five-family based studies across the US, Europe, and Australia. FA measurements from the HCP cohort for eleven major white matter tracts were highly heritable (h2 = 0.53–0.90, p < 10− 5), and were significantly correlated with the joint-analytical estimates from the ENIGMA cohort on the tract and voxel-wise levels. The similarity in regional heritability suggests that the additive genetic contribution to white matter microstructure is consistent across populations and imaging acquisition parameters. It also suggests that the overarching genetic influence provides an opportunity to define a common genetic search space for future gene-discovery studies. Uniquely, the measurements of additive genetic contribution performed in this study can be repeated using online genetic analysis tools provided by the HCP ConnectomeDB web application
    • …
    corecore